Search results for "nal solutions"

showing 10 items of 20 documents

First and second order rational solutions to the Johnson equation and rogue waves

2018

Rational solutions to the Johnson equation are constructed as a quotient of two polynomials in x, y and t depending on several real parameters. We obtain an infinite hierarchy of rational solutions written in terms of polynomials of degrees 2N (N + 1) in x, and t, 4N (N + 1) in y, depending on 2N − 2 real parameters for each positive integer N. We construct explicit expressions of the solutions in the cases N = 1 and N = 2 which are given in the following. We study the evolution of the solutions by constructing the patterns of their modulus in the (x, y) plane, and this for different values of parameters.

wronskiansJohnson equation4710A-[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]ratio-rogue wavesnal solutions37K10[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]33Q554735FgPACS numbers :4754BdFredholm determinants
researchProduct

Multi-parameters rational solutions to the mKdV equation

2021

N-order solutions to the modified Korteweg-de Vries (mKdV) equation are given in terms of a quotient of two wronskians of order N depending on 2N real parameters. When one of these parameters goes to 0, we succeed to get for each positive integer N , rational solutions as a quotient of polynomials in x and t depending on 2N real parameters. We construct explicit expressions of these rational solutions for orders N = 1 until N = 6.

47.35.FgNonlinear Sciences::Exactly Solvable and Integrable Systemswronskians47.10A-rational solutions PACS numbers : 33Q55[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]47.54.Bd[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]37K10mKdV equation
researchProduct

Solutions of the LPD equation and multi-parametric rogue waves

2022

Quasi-rational solutions to the Lakshmanan Porsezian Daniel equation are presented. We construct explicit expressions of these solutions for the first orders depending on real parameters. We study the patterns of these configurations in the (x, t) plane in function of the different parameters. We observe in the case of order 2, three rogue waves which move according to the two parameters. In the case of order 3, six rogue waves are observed with specific configurations moving according to the four parameters.

47.35.Fg47.10A-47.54.Bdquasi-rational solutions PACS numbers : 33Q5537K10[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Lakshmanan Porsezian Daniel equation
researchProduct

8-parameter solutions of fifth order to the Johnson equation

2019

We give different representations of the solutions of the Johnson equation with parameters. First, an expression in terms of Fredholm determinants is given; we give also a representation of the solutions written as a quotient of wronskians of order 2N. These solutions of order N depend on 2N − 1 parameters. When one of these parameters tends to zero, we obtain N order rational solutions expressed as a quotient of two polyno-mials of degree 2N (N +1) in x, t and 4N (N +1) in y depending on 2N −2 parameters. Here, we explicitly construct the expressions of the rational solutions of order 5 depending on 8 real parameters and we study the patterns of their modulus in the plane (x, y) and their …

rogue waves PACS numbers : 33Q55ratio- nal solutionswronskiansrational solutions[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Johnson equation4710A-[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]37K104735Fg4754BdFredholm determinants
researchProduct

Solutions to the Gardner equation with multi-parameters and the rational case

2022

We construct solutions to the Gardner equation in terms of trigonometric and hyperbolic functions, depending on several real parameters. Using a passage to the limit when one of these parameters goes to 0, we get, for each positive integer N , rational solutions as a quotient of polynomials in x and t depending on 2N parameters. We construct explicit expressions of these rational solutions for orders N = 1 until N = 3. We easily deduce solutions to the mKdV equation in terms of wronskians as well as rational solutions depending on 2N real parameters.

wronskiansrational solutionsGardner equation[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]
researchProduct

N order solutions with multi-parameters to the Boussinesq and KP equations and the degenerate rational case

2021

From elementary exponential functions which depend on several parameters, we construct multi-parametric solutions to the Boussinesq equation. When we perform a passage to the limit when one of these parameters goes to 0, we get rational solutions as a quotient of a polynomial of degree N (N + 1) − 2 in x and t, by a polynomial of degree N (N + 1) in x and t for each positive integer N depending on 3N parameters. We restrict ourself to give the explicit expressions of these rational solutions for N = 1 until N = 3 to shortened the paper. We easily deduce the corresponding explicit rational solutions to the Kadomtsev Petviashvili equation for the same orders from 1 to 3.

47.35.Fg47.10A-rational solutions PACS numbers : 33Q55[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]47.54.Bd37K10[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Boussinesq equationKadomtsev Petviashvili equation
researchProduct

Solutions to the Gardner equation with multiparameters and the rational case

2022

We construct solutions to the Gardner equation in terms of trigonometric and hyperbolic functions, depending on several real parameters. Using a passage to the limit when one of these parameters goes to 0, we get, for each positive integer N , rational solutions as a quotient of polynomials in x and t depending on 2N parameters. We construct explicit expressions of these rational solutions for orders N = 1 until N = 3. We easily deduce solutions to the mKdV equation in terms of wronskians as well as rational solutions depending on 2N real parameters.

47.35.Fgwronskians47.10A-rational solutions PACS numbers : 33Q5547.54.BdGardner equation37K10[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]
researchProduct

Quasi-rational solutions of the Hirota equation depending on multi-parameters and rogue waves

2023

Quasi-rational solutions to the Hirota equation are given. We construct explicit expressions of these solutions for the first orders. As a byproduct, we get quasi-rational solutions to the focusing NLS equation and also rational solutions to the mKdV equation. We study the patterns of these configurations in the (x, t) plane.

Hirota equationquasi-rational solutions[MATH] Mathematics [math]
researchProduct

Mean-field games and dynamic demand management in power grids

2013

This paper applies mean-field game theory to dynamic demand management. For a large population of electrical heating or cooling appliances (called agents), we provide a mean-field game that guarantees desynchronization of the agents thus improving the power network resilience. Second, for the game at hand, we exhibit a mean-field equilibrium, where each agent adopts a bang-bang switching control with threshold placed at a nominal temperature. At equilibrium, through an opportune design of the terminal penalty, the switching control regulates the mean temperature (computed over the population) and the mains frequency around the nominal value. To overcome Zeno phenomena we also adjust the ban…

Statistics and ProbabilityEconomics and EconometricsMains electricityViscosity solutionDynamic demand managementPopulationDistributional solutionsInterval (mathematics)law.inventionSettore ING-INF/04 - AutomaticalawControl theoryEconomicseducationeducation.field_of_studyApplied MathematicsComputer Graphics and Computer-Aided DesignThermostatMean field gameComputer Science ApplicationsPower (physics)Computational MathematicsComputational Theory and MathematicsTerminal (electronics)Dynamic demandSettore MAT/09 - Ricerca OperativaGame theoryMathematical economics
researchProduct

An extended Darboux transformation to get families of solutions to the KPI equation

2023

By means of a Darboux transform with particular generating function solutions to the Kadomtsev-Petviashvili equation (KPI) are constructed. We give a method that provides different types of solutions in terms of particular determinants of order N. For any order, these solutions depend of the degree of summation and the degree of derivation of the generating functions. We study the patterns of their modulus in the plane (x, y) and their evolution according time and parameters.

KPI equationwronskiansrational solutions[MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP]Darboux transformation
researchProduct